Phosphorylation of the human vitamin D receptor by protein kinase C. Biochemical and functional evaluation of the serine 51 recognition site.
نویسندگان
چکیده
We have reported previously that the human vitamin D receptor (hVDR) is selectively phosphorylated by protein kinase C-beta (PKC-beta), in vitro, on a serine residue in the sequence RRS51MKRK, which is located between the two zinc fingers of hVDR and is potentially important to its transacting function (Hsieh, J.-C., Jurutka, P.W., Galligan, M.A., Terpening, C.M., Haussler, C.A., Samuels, D.S., Shimizu, Y., Shimizu, N., and Haussler, M.R. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 9315-9319). In the present experiments we evaluated this phosphorylation event using a series of hVDR mutants in which serine 51 or its flanking residues were modified. Alteration of serine 51 to a non-phosphorylatable residue resulted in an approximately 60% reduction in basal hVDR phosphorylation in intact cells but did not diminish 1,25-dihydroxyvitamin D3-stimulated phosphorylation. Such mutations also abolished subsequent phosphorylation of immunoprecipitated hVDR by purified PKC-beta, in vitro, as did replacement of basic residues on either side of serine 51. Mutation of serine 51 to glycine (S51G) or to aspartic acid (S51D), as well as altering the basic residues flanking serine 51, abolished the interaction of hVDR with the vitamin D-responsive element (VDRE) as monitored by gel mobility shift analysis. Thus, we conclude that unmodified serine 51 and its surrounding basic residues are crucial not only for PKC-beta substrate recognition but also for the optimal VDRE binding of native hVDR. In transactivation assays, S51G and S51D possessed only 35 and 10% of wild-type hVDR activity, respectively. Mutation of serine 51 to threonine (S51T) restored phosphorylation by PKC-beta, in vitro, to about 40% of wild-type and transactivation to 45% of that of wild-type hVDR. Alteration of serine 51 to alanine, which is the residue in the corresponding position of the glucocorticoid, progesterone, mineral-ocorticoid, and androgen receptors, eliminated PKC-beta phosphorylation but completely preserved the specific DNA binding activity and transactivation capacity of hVDR. Thus, phosphorylation of hVDR at serine 51 is not required for either VDRE binding or transactivation. Finally, incubation of Escherichia coli-expressed hVDR with PKC-beta elicits marked phosphorylation of the receptor and significantly inhibits its ability to complex with the VDRE. We therefore speculate that posttranslational modification of hVDR at serine 51 may constitute a negative regulatory loop which could be operative when target cells are subject to PKC activation events.
منابع مشابه
VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملبررسی اثر افزایش cAMP بر فسفوریلاسیون پروتئین BAD در ردهی سلولی لوسمی لنفوبلاستیک حاد پیش سازB- (NALM-6) تیمارشده با دوکسوروبیسین
Kashiri M1, Safa M2, Kazemi A3 1Dept. of Hematology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran 2Cellular and Molecular Research Center, Dept. of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran 3Dept. of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, I...
متن کاملReplacement of Serine363 and Serine375 Codons by Alanine in Rat μ-Opioid Receptor cDNA
The aim of this study was to use site directed mutagenesis technique to construct a vector in which serine363 and serine375 residues of the COOH-terminal portion of the μ-opioid receptor (MOR) were substituted by alanine. These constructs are essential in studying G-protein coupled receptor kinase-mediated MOR desensiti-zation. The nested PCR carried out for conversio...
متن کاملMolecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملEffect of vitamin D supplementation on CREB-TrkB-BDNF pathway in the hippocampus of diabetic rats
Objective(s): Cyclic AMP (adenosine monophosphate) response element-binding protein (CREB) and Brain-derived neurotrophic factor (BDNF) are reported to broadly involve in learning capacity and memory. BDNF exerts its functions via tropomyosin receptor kinase B (TrkB). BDNF transcription is regulated by stimulating CREB phosphorylation. The CREB-TrkB-BDNF pathway is rep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 268 20 شماره
صفحات -
تاریخ انتشار 1993